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Abstract  Because of features like security, immutabil-
ity, and decentralization, blockchain (BC) is important to 
cybersecurity. The development of Internet of Things (IoT) 
networks has created serious cybersecurity issues and neces-
sitated the use of cutting-edge defenses against new dan-
gers. Multi-Head Attention Bidirectional Long Short Term 
Memory (MHA-BiLSTM), a Deep Learning (DL) technique, 
is presented in this paper to improve cybersecurity in an 
Internet of Things setting. This work includes steps like 
data storage, encryption, decryption, and cyberattack detec-
tion. First, Elliptical Curve Cryptography (ECC) is used to 

encrypt the data, and Black-Winged Kite (BWK) optimiza-
tion is used to optimize the ECC’s key parameters. The data 
is stored in the BC following the encryption process. The 
data is then decrypted using ECC, and the MHA-Bi-LSTM 
completes the cybersecurity procedure. This model improves 
its ability to recognize and lessen cyberthreats. The proposed 
cybersecurity model significantly improved threat detection 
accuracy, according to analysis. This method offers a scal-
able, resilient, and cyberattack-proof model for securing IoT 
networks in real-time applications.
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1  Introduction

With the growing reliance on cloud technologies in 
modern society, combined with the fundamental human 
requirement to communicate and exchange data through 
digital networks, Internet of Things (IoT) devices play 
a crucial role in modern business operations [1]. The 
exchange of social and transactional data for instance 
financial markets accelerates the rapid advancement of 
emerging technologies to meet the ever-growing supply 
and demand dynamics [2]. In household environments, 
sharing digital media, like images, videos, music, and 
documents, through messaging platforms enhances fields 
such as information technology, social sciences, sports, 
healthcare and education, IoT devices facilitate the per-
fect and instant global transfer of this data via the cloud, 
through the Internet of Everything (IoE) [3].

Cybersecurity is implementing measures for safeguard 
computer systems, data, and networks from disruptions, 
unauthorized access, use, modification, disclosure, and 
destruction [4]. Thus, understanding cybersecurity and its 
applications for IoT and smart devices raises additional 
questions that require examination via different concepts of 
cyberspace. One of the various methods for standardizing 
the different terminologies, like focusing the requirement 
for understanding the nature of network intrusions, detection 
methods, and strategies for preventing cyber threats [5]. In 
terms of prevention, a combination of Artificial Intelligence 
(AI) and Machine Learning (ML) can play an important role 
in enhancing data security and protection.

Blockchain (BC) is frequently mentioned as Distributed 
Ledger Technologies (DLT) used to maintain the data stor-
age integrity and exchange in environments that lack cen-
tralized trust [6]. It operates as a Peer-to-Peer (P2P) decen-
tralized system, allowing secure data exchanges between 
untrusted participants within a network. BC systems like 
Hyperledger and Ethereum obtained extensive foundational 
frameworks, for various BC-related software applications 
[7]. Key attributes of BC, like decentralization and stablil-
ity, are highly valued by industries like finance and health-
care for magnifying their operational efficiency [8]. BC can 
reduce different cyber threats by ensuring data integrity, and 
strengthening trust among devices. Its decentralized nature 
minimizes the risk of a single point of failure, a common 
susceptibility in existing centralized systems [9].

In IoT, combining Deep Learning (DL) with BC tech-
nology increases cybersecurity. DL models can identify 
complex patterns in large data and making them highly 
powerful in identifying abnormality and cyber threats in 
real-time [10]. When integrating DL with BC, these models 
benefit from secure data inputs. This increases the accuracy 
and reliability of cyberattack detection. Thus, DL with BC 
improves threat detection and facilitates secure data sharing 
and association over networks. This provides the way for 
more robust and adaptive IoT security frameworks [11]. The 
contributions are:

•	 To introduce the ECC-BWK algorithm for enhancing the 
encryption and decryption process and reducing compu-
tational overhead.

•	 To present the DL model MHA-Bi-LSTM for advanced 
threat detection capabilities by accurately identifying and 
classifying cyberattacks.
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•	 By integrating BC, the system provided decentralized 
data storage and protects from unauthorized access.

2 � Related works

Nguyen et al. [12] utilized sensor devices for data collec-
tion and employ a Deep Belief Network (DBN) for detect-
ing intrusions. Then, it incorporated a Multiple Share Cre-
ation (MSC) approach to generate different shares of the 
obtained images, enhancing security and privacy. Here, the 
BC ensured secure data transmission and the ResNet was 
used for identifying the disease presence.

Rathore et al. [13] suggested model DeepBlockIoTNet 
integrated with BC for IoT networks, and offered significant 
advancements in DL for big data analysis. The framework 
provides three key contributions: It introduced a Distrib-
uted DL (DDL) model which facilitated DL operations at 
the edge layer which helps address limitations associated 
with performing DL at the cloud layer. This DDL was imple-
mented within a BC and addresses key limitations in edge 
intelligence. At last, the DeepBlockIoTNet was validated 
through experimental evaluation.

Unal et al. [14] presented the cyber situational aware-
ness engine facilitates alert segregation using an entropy 
weighted power k-means clustering. Here, the weights were 
dynamically updated through the Adaptive Transit Search 
(ATS). Then, the hybrid model Soergel with Lorentzian 
was used for selecting features and finally, the Deep Max-
out Network (DMN) was used for predicting intrusion alerts. 
Based on the prediction outcomes, cyberattack mitigation 
was performed by implementing a blacklist mechanism for 
enhancing system security.

Kumar et al. [15] presented Digital Twin (DT) based 
Software-Defined Networking (SDN) for smart grid. Here, 
Bidirectional-Gated Recurrent Unit (Bi-GRU) was used for 
cyberattack detection and softmax was used for enhanc-
ing attack identification model. DT method was ultimately 
incorporated into the SDN control plane. This integration 

allows the control plane for storing behavioral method and 
operational phase of Smart Machines and facilitating com-
munication with them.

Veeramakali et al. [16] introduces an IoT and healthcare 
diagnostic approach which considered an optimal Deep Neu-
ral Network (DNN) based secure BC. The stages like secure 
transaction management, encrypting hash value, and medical 
diagnosis. Here, the optimal process was performed by the 
Orthogonal Particle Swarm Optimizer (OPSO). The Neigh-
borhood Indexing Sequence (NIS) was used for hash value. 
At last, the DNN with OPSO was employed as a classifier 
for diagnose diseases.

Unal et al. [14] suggested Federated Learning (FL) based 
BC for securing big data analytics. By the integration of the 
FL with BC provided better integrity and overcome poison 
attacks. For protecting the user data security and the trained 
approaches, the fuzzy hash was utilized and the performance 
was carried out over poison attacks.

3 � Proposed model

In this work, cybersecurity involves a multi-stage approach 
to ensure data security and integrity in IoT environments. 
Initially, data is encrypted using ECC-BWK algorithm and 
provides better secure encryption. Further, it ensures con-
fidentiality and protection from unauthorized access. After 
the process of encryption, the data is stored on a BC and it 
offers secure and transparent data communication in IoT. 
After retrieval, the data is decrypted using ECC-BWK, 
restoring it to its original form. The MHA-Bi-LSTM model 
then performs the cybersecurity process. This model detects 
cyber threats by analyzing the decrypted data. The suggested 
model provided enhances security by ensuring data protec-
tion and better detection of cyberattacks in IoT systems. Fig-
ure 1 shows the framework of the suggested cybersecurity 
process.

Fig. 1   Framework of suggested 
cybersecurity process
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3.1 � Dataset acquisition

The dataset CICIoT2023 [17] was introduced in 2023 by 
Canadian Institute for Cybersecurity (CIC). The data offers 
a comprehensive resource for studying IoT based cyberat-
tacks. This data captures a variety of malicious activities 
performed by compromised IoT devices targeting other 
IoT systems. The data has 232,885 network connections 
and encompasses 47 various features. The dataset covers 
33 specific sub-attacks and grouped into 7 main categories: 
Denial of Service (DoS), Distributed DoS (DDoS), web 
based attacks, reconnaissance, Mirai, brute-force attacks, 
and spoofing.

3.2 � Encryption

The input data CICIoT2023 is encrypted using ECC and it 
has benefits like small key size, low computational over-
head and provides security when compared to conventional 
public key protocols. Based on mathematical model of 
elliptic curves, EE provides better communication among 
two nodes via key exchange and provides data integrity. In 
ECC, the points on the elliptic curve are stated as:

where a, f  is the set of points g, l is the elliptic curve vertices.
Let two points A and B on elliptic curve U , the basic 

group operation has point addition, point subtraction, point 
doubling, and scalar multiplication.

Point addition is given as:

(1)a2 mod g = f 3 + g × f × l mod g

where J is used for connecting A and B intersect the curve.
Point subtraction is given as:

Point doubling is given as:

where A result in the new point S.
Scalar multiplication is given as:

where k is the value of the scalar.
To further strengthen the system, an optimization algo-

rithm BWK is applied to fine-tune the key parameters of 
ECC, optimizing encryption and decryption performance. 
This provides faster processing and reduced resource con-
sumption. It is critical for IoT devices with less computa-
tional power.

The BKA is inspired by the hunting and migratory behav-
iors of the Black-winged Kite (BK), and specifically mod-
eling its attack strategies and migration patterns. Figure 2 
presents the pseudocode for the BKA and it shows the opera-
tional flow. The stages like initialization, attacking strategy, 
migratory strategy and balancing-diversity analysis.

Initialization: In BKA, the initial step involves generat-
ing a collection of random solutions for forming the popu-
lation. Each solution, representing the position of an indi-
vidual BK and it is present in a matrix format as follows:

(2)A + B = J

(3)A − B = A + (−B)

(4)A + A = 2A = S

(5)A + A +⋯ + A = kA

Fig. 2   Data processing in BC
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where d is the dimension is the size of the population, BKlm 
is the mth dimension of the lth BK. Every BK position is 
uniformly given as:

where r,BKub and BKlb are the random number, upper bound 
and lower bound.

During the initialization phase of the BKA, the individual 
with the large value of the fitness in the initial population is 
chosen as the header ZH . This ZH represents the best position 
among the BK. The ZH can be mathematically expressed, 
using the minimum fitness value and it is given as:

Attacking strategy: BK, known for preying on tiny insects 
grassland and, mammals and adapt their tail and wing angles 
on the basis of the wind speed when it flies. They silently 
hover in place to monitor their prey before swiftly diving 
down to capture it. This process has various attacking char-
acteristics for global exploration and search. This strategy 
is expressed as:

where T is the overall iterations, xl,mt  and xl,m
t+1

 are the position 
of the mth dimension of the lth BK at t  and t + 1 iterations. 
The value of s is 0.9 and it is a constant number.

Migratory strategy: Migration behaviour of the birds 
is influenced by environmental factors like food availabil-
ity and climate. In the context of the BKA, if the current 
population’s fitness value is less than the randomly gener-
ated population, the header renounces its role and joins the 
migrating group. This indicates its unsuitability for guid-
ing the population forwarding process. Conversely, when 
the current population’s fitness value higher than the ran-
domized population, the header continues to direct the set 
toward its target. This mechanism ensures that only the most 
capable headers are selected dynamically and enhancing the 
chances of a better relocation. This process is given as:

(6)BK =

⎡
⎢⎢⎢⎢⎣

BK1,1 BK1,2 ⋯ BK1,d

BK1,1 BK1,2 ⋯ BK1,d

⋮ ⋮ ⋮ ⋮

BKq,1 BKq,2 ⋯ BKq,d

⎤
⎥⎥⎥⎥⎦

(7)Zl = BKlb + r ×
(
BKub − BKlb

)

(8)fb = min imum
(
f
(
Zl
))

(9)ZH = Z
(
find

(
fb == f

(
Zl
)))

(10)x
l,m

t+1
=

{
xl,m
t

+ i(1 + sin(r)) × xl,m
t

s < r

xl,m
t

+ i(2r − 1) × xl,m
t

elsewhere

(11)i = 0.05 × exp (2 × (t∕T))

where Hm
t

 is the header score of the BK position of the mth 
dimension at t . Fl is the present position, Frl is the random 
position and B(0, 1) is the Cauchy mutation. The one dimen-
sion Cauchy distribution is a continual probability of distri-
bution with dual parameter. The below expression is used 
for defining Cauchy distribution:

where � = 0 and � = 1.

3.3 � Data storage

The encrypted data from ECC is stored in blockchain (BC) 
and it shows the process of establishing a connection and 
adding new blocks to the previous block. For initiating 
the connection, a member, which could be any authenti-
cated person in the cybersecurity model, sends a message 

(12)

x
l,m

t+1
=

{
xl,m
t

+ B(0, 1) ×
(
xl,m
t

− Hm
t

)
Fl < Frl

xl,m
t

+ B(0, 1) ×
(
Hm

t
− n × xl,m

t

)
elsewhere

(13)n = 2 × sin (r + �∕2)

(14)f (y, 𝛼, 𝛾) =
1

𝜋

𝛼

𝛼2 + (y − 𝛾)2
−∞ < y < ∞
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indicating the creation of a new block or record. This newly 
created block may have different information, all of which 
are distributed across the network devices via the BC. The 
transaction is stored within the block and shared with all 
network nodes. Once the BC is completed, all nodes in the 
network hold an identical copy of the data and makes mem-
bers to join during the verification process. They confirm the 
integrity of the block containing the transactions as soon as 
it is send to the network participants. After successful veri-
fication, the new block is added to the previous block. Each 
block in the BC contains three elements: data, the hash of 
the current block, and the hash of the previous block. The 
authenticated person can decrypt the data using ECC. Fig-
ure 2 shows the data processing in BC.

3.4 � Cyber attack detection

The decrypted data is fed to the MHA-Bi-LSTM for Cyber 
attack detection. The LSTM network share a fundamental 
framework with general Recurrent Neural Networks (RNN) 
but employ a distinct approach for computing hidden states. 
This design addresses the challenge in RNN in manag-
ing long-term dependencies. The superior performance of 
LSTM models is not simply due to algorithmic learning 
but is attributed to their specialized structural design. Each 
LSTM unit has multiple repeating memory blocks and each 
containing three essential gates as shown in Fig. 3.

Let the input data U , the state values in the LSTM is 
defined as:

The forget gate fn at time n shows which prior informa-
tion must be kept and the sigmoid function � controls the 
output of the gate.

The input gate in shows the impacts of the input on the 
memory cell state cn and it also uses �.

The candidate’s memory cell 
∼
cn shows the potential new 

information and it uses activation function tanh.

The memory cell state cn combines new information and 
keeps prior information cn−1.

Output gate on shows the output from the present memory 
state.

The hidden state is computed by integrating activation 
of the on with cn.

(15)fn = �
(
Wf + Vf hn−1 + bf

)

(16)in = �
(
Wi + Vihn−1 + bi

)

(17)
∼
cn = tanh

(
Wc + Vchn−1 + bc

)

(18)cn = in◦
∼
cn +fn◦cn−1

(19)
∼
cn = tanh

(
Wc + Vchn−1 + bc

)

Fig. 3   Structure of the LSTM

Fig. 4   Structure of the MHA-Bi-LSTM
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The standard LSTM models process sequences based 
solely on historical information, Bidirectional LSTM (Bi-
LSTM) enhance performance by considering both past 
and future contexts. A Bi-LSTM consists of two layers: 
a forward LSTM layer, which processes data from past to 
future, and a backward LSTM layer, which processes data 
in the reverse order. Both layers feed into the same output 
layer and enhance the feature extraction process. The for-
ward hidden state 

→

hn at time n is given as:

The backward hidden state 
←

hn at time n is given as:

These two hidden states are combined to get hn as:

where ⊕ is the concatenation.
MHA: This layer adds another layer of flexibility 

and enables the model to prioritize specific parts of the 
sequence that are more relevant to the current output. For 
every MHA, the queries Q , keys K and values V  . Figure 4 
shows the structure of the MHA-Bi-LSTM For the single 
attention head, the attention At is computed as:

(20)hn = on◦ tanh
(
cn
)

(21)
→

hn = L

(
→

hn − 1, cn − 1

)

(22)
←

hn = L

(
←

hn − 1, cn − 1

)

(23)hn =
→

hn ⊕
←

hn

(24)At(Q,K,V) = softmax

�
QKT

√
dk

�
V

where dk is the key vector dimension. For multi-head, the 
MHA is given as:

where H is the overall attention heads and W0 is the weight-
ing matrices. Every head headj is computed as:

The Global Average Pooling (GAP) Layer for minimizing 
the over-fitting issue and it is placed after the MHA. Finally, 
the softmax is used for finding the cyber attacks.

(25)MHA(Q,K,V) = Con
(
head1, head2, ........, headH

)
W0

(26)headj = At
(
QW

Q

j
,KW

Q

j
,VW

Q

j
,
)

Fig. 5   Encryption time comparison

Fig. 6   Decryption time comparison

Fig. 7   Memory size comparison
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4 � Results analysis

The following section shows the anlaysis of the suggested 
and exisiting cyberattack detection model. The experimen-
tation of the work is carried out on Intel core i7-7700 and 
Python 3.6. The encryption process is demonstrated for 
methods like Data Encryption Standard (DES), Advanced 
Encryption Standard (AES), ECC and the proposed ECC-
BWK. Then, the cyberattack detection performance is car-
ried out for the methods like RNN, LSTM, Bi-LSTM and 
MHA- Bi-LSTM.

4.1 � Comparitive analysis

Following section shows the comparitive analysis with 
respect to the data encryption and cyberattack detection.

Figure 5 presents the encryption time comparison of the 
different approaches like DES, AES, ECC and the proposed 
ECC-BWK. Encyption time is carried by varying block sizes 
from 100 to 500. This comparison shows the performance 
differences and showing how all algorithms handles encryp-
tion speed.When the block size is 100, the encryption time 
attained by the DES, AES, ECC and the proposed ECC-
BWK are 0.33 s, 0.3 s, 0.25 s and 0.1 s. Similarly, when the 
block size is 500, the encryption time attained by the DES, 
AES, ECC and the proposed ECC-BWK are 4.05 s, 3.74 s, 
3.58 s and 3.3 s. Thus, the suggested ECC-BWK attained 
better performance, enhances key generation efficiency and 
reduces computational complexity.

Figure 6 presents the Decryption time comparison of the 
different approaches like DES, AES, ECC and the proposed 
ECC-BWK. When the block size is 100, the decryption time 
attained by the DES, AES, ECC and the proposed ECC-
BWK are 0.1 s, 0.08 s, 0.09 s and 0.05 s. then, the block 
size is 200, the decryption time attained by the DES, AES, 
ECC and the proposed ECC-BWK are 0.6 s, 0.5 s, 0.55 s and 
0.45 s. It is observed that for all approaches when the block 
size is increased, the decryption time is also increasing.

Figure 7 presents the memory size comparison of the dif-
ferent approaches like DES, AES, ECC and the proposed 
ECC-BWK. It is measured in Kilobyte (KB). This meas-
ure reflects the efficiency and resource requirements of all 
algorithms. This comparison show how much memory all 
algorithms need during the encryption process, with the pro-
posed ECC-BWK demonstrating optimized memory perfor-
mance compared to the conventional algorithms. That is the 
memory size of the proposed ECC-BWK is 18 KB, 45 KB, 
90 KB, 170 KB and 180 KB when the block sizes are 100, 
200, 300, 400 and 500.

Figure 8 presents the Total computation time compari-
son of the different approaches like DES, AES, ECC and 
the proposed ECC-BWK. This comparison evaluates the 
processing efficiency of all algorithms and highlighting the 
time required for completing encryption tasks. The pro-
posed ECC-BWK demonstrates improved performance, with 
reduced computation time compared to traditional methods 
like DES, AES, and standard ECC. This suggests that ECC-
BWK’s optimized structure increases encryption speed and 
creating it more efficient for practical applications. That is 
the memory size of the proposed ECC-BWK is 0.1 s, 1.5 s, 
2.5 s, 3.5 s and 4.9 s when the block sizes are 100, 200, 300, 
400 and 500.

Figure 9 shows the comparison of cyberattack measures 
like accuracy, precision, recall and F-score. The methods 
like RNN, LSTM, Bi-LSTM and MHA- Bi-LSTM are com-
pared. This comparison illustrates how all models performs 
in identifying and mitigating cyber threats. An accuracy 
value achieved by the RNN is 0.9, LSTM is 0.91, Bi-LSTM 
is 0.95 and MHA- Bi-LSTM is 0.98. The precision value 

Fig. 8   Total computation time comparison

Fig. 9   Comparison of cyberattack measures
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achieved by the RNN is 0.9, LSTM is 0.92, Bi-LSTM is 
0.95 and MHA- Bi-LSTM is 0.97. The recall value achieved 
by the RNN is 0.92, LSTM is 0.93, Bi-LSTM is 0.95 and 

MHA- Bi-LSTM is 0.97. Finally, the Fscore value achieved 
by the RNN is 0.93, LSTM is 0.93, Bi-LSTM is 0.96 and 
MHA- Bi-LSTM is 0.97.

Fig. 10   ROC curve

Fig. 11   Confusion matrix
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Figure 10 represents the Region of Characteristics (ROC) 
curve analysis of the proposed MHA-Bi-LSTM model. The 
ROC curve presents the model’s performance in different-
ing between attacks and normal behavior by plotting the 
True Positive Rate against the False Positive Rate at various 
threshold settings. The area under the ROC curve (AUC) 
indicates the model’s ability to correctly classify instances. 
A higher AUC value shows better discrimination ability and 
the MHA-Bi-LSTM model show its strong performance in 
accurately detecting cyberattacks and achieved better AUC 
value 97.8.

Figure 11 represents the confusion matrix of the proposed 
MHA-Bi-LSTM model. There are 138 samples are catego-
rized as normal and 11 samples are misclassified. There 
are 95 samples are categorized as attack and 3 samples are 
misclassified.

4.2 � Security analysis

Algorithms like DES, AES, ECC, and the proposed ECC-
BWK in terms of their susceptibility to Known-Plaintext 
Attack (KPA) and Chosen-Plaintext Attack (CPA) are ana-
lyzed in Table 1.

KPA: ECC-BWK shows exceptional resistance to KPA 
because of the essential complexity of ECC combined with 
the BWK optimization. The ECC is based on the complexity 
of solving the Elliptic Curve Discrete Logarithm Problem 
(ECDLP). This creates it extremely challenging for attack-
ers for deriving the private key even with known plaintext-
ciphertext pairs. The BWK optimization enhances this by 
improving key generation and parameter selection, reducing 
potential vulnerabilities.

CPA: ECC-BWK ensures strong defense against CPA. 
The combination of BWK optimizes encryption processes 
and provides that key parameters are dynamically selected 
for resisting attempts to predict ciphertext outcomes. This 
advanced model prevents attackers from gaining essential 
information by submitting chosen plaintext and maintains 
the confidentiality and integrity of the system.

5 � Conclusion

The proposed model has the stages like encryption, data stor-
age, decryption, and cyberattack detection. In this suggested 
model, the ECC with BWK model integrated with BC offers 
a robust and efficient solution. Then, the DL model MHA-
Bi-LSTM provided better cybersecurity in IoT environments. 
By considering the strengths of ECC, which ensured high 
security with smaller key sizes, and the BWK optimization, 
improves key generation and cryptographic processes, the 
suggested model addressed key cybersecurity limitations like 
data integrity, authentication, and secure communication in Ta
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IoT networks. The integration with BC offered decentralized, 
and transparent, making the system resistant to several cyber 
threats. The model has demonstrated superior resistance to 
KPA and CPA through extensive performance evaluations 
compared to traditional cryptographic methods. Then, with 
respect to the cyberattack detection accuracy and precision val-
ues achieved were 0.98 and 0.97 on the CICIoT2023 dataset. 
The combination of ECC and BWK optimization offers high 
encryption and decryption times by varying block size from 
100 to 500 and developing it suitable for IoT applications with 
resource constraints. The analysis demonstrated that the sug-
gested model remarkably improves threat detection accuracy 
and also offers a scalable solution to secure IoT networks. In 
the future, since quantum computing is emerging, combining 
post-quantum cryptographic techniques into the ECC and BC 
framework may provide future proof security and ensure resist-
ance to potential quantum based attacks. The MHA-BiLSTM 
model will be enhanced by integrating external threat intel-
ligence data sources for improving its ability in predicting and 
responding to emerging cyber threats in real-time.
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